

Hibernate Performance Tuning

www.thoughts-on-java.org

Hi,

I am Thorben, the author of thoughts-on-java.org,

and I want to thank you for signing up and

downloading the “Hibernate Performance Tuning”

cheat sheet!

The most important step when fixing performance

issues is always to recognize their existence and

their cause. In my experience, Hibernate Statistics are most often very helpful

for this. Therefore activating and analyzing the statistics is always a good thing

to start and also the first part of this cheat sheet.

After that you obviously need to find and fix the cause of the performance issue.

The most common ones are:

 Slow queries,

 Using the wrong FetchType,

 Loading the same data multiple times and

 Updating one entity after the other instead of using bulk operations.

This cheat sheet gives you an overview about some of the available solutions to

these issues and links to more detailed information.

If you like to get in touch and discuss some performance tuning technics, write

me an email at thorben@thoughts-on-java.org or tweet me at @thjanssen123.

Take care,

http://www.thoughts-on-java.org/
http://www.thoughts-on-java.org/
mailto:thorben@thoughts-on-java.org
http://www.twitter.com/thjanssen123

Hibernate Performance Tuning

www.thoughts-on-java.org

Find performance issues with Hibernate Statistics
Hibernate Statistics provide some very useful information when searching and
analyzing performance issues, like the number of SQL queries performed
within a Hibernate session, the time spend for these queries and how many
entities were retrieved from the cache.

2015-03-03 20:28:52,484 DEBUG
[org.hibernate.stat.internal.ConcurrentStatisticsImpl] (default task-1)
HHH000117: HQL: Select p From Product p, time: 0ms, rows: 10
2015-03-03 20:28:52,484 INFO
[org.hibernate.engine.internal.StatisticalLoggingSessionEventListener]
(default task-1) Session Metrics {
 8728028 nanoseconds spent acquiring 12 JDBC connections;
 295527 nanoseconds spent releasing 12 JDBC connections;
 12014439 nanoseconds spent preparing 21 JDBC statements;
 5622686 nanoseconds spent executing 21 JDBC statements;
 0 nanoseconds spent executing 0 JDBC batches;
 0 nanoseconds spent performing 0 L2C puts;
 0 nanoseconds spent performing 0 L2C hits;
 0 nanoseconds spent performing 0 L2C misses;
 403863 nanoseconds spent executing 1 flushes (flushing a total of 10
entities and 0 collections);
 25529864 nanoseconds spent executing 1 partial-flushes (flushing a total of
10 entities and 10 collections)
}

The Hibernate Statistics need to be activated by setting the system property:
hibernate.generate_statistics = true and activating DEBUG
logging for org.hibernate.stat.
Activating the statistics can have a very huge performance impact and should
not be done on any production system!

Read more: http://bit.ly/1QWS8Ik

http://www.thoughts-on-java.org/
http://bit.ly/1QWS8Ik

Hibernate Performance Tuning

www.thoughts-on-java.org

Improve slow queries
Slow queries are not a real JPA or Hibernate issue. These kind of problems
occurs with every framework, even with plain SQL over JDBC and need to be
analyzed on the SQL and database level.

Slow queries can be improved by:

 Analyzing the generated SQL,

 Checking the execution plan, indexes, etc.,

 Optimizing the queries based on this information.

Native SQL queries can be used, if JPQL does not provide the required feature
set. The Object[] returned by native queries can be declaratively mapped
with @SqlResultSetMapping.

Read more: http://bit.ly/1LHENA9

Choose the right FetchType
The FetchType is specified in the entity mapping and defines when a

relationship will be loaded. Using the wrong FetchType can result in a huge
number of queries that are performed to load the required entities.

@ManyToMany(mappedBy="authors",

 fetch=FetchType.LAZY)

The main problem of the FetchType definition is, that you can only define
one FetchType for a relationship, which will be used every time an entity
gets fetched from the database.
The best solution is to use FetchType.LAZY for to-many relationships and
specify eager loading for specific queries

http://www.thoughts-on-java.org/
http://bit.ly/1LHENA9

Hibernate Performance Tuning

www.thoughts-on-java.org

Use query specific fetching
If you require entities with initialized relationships, you should define this for
the specific query instead of using FetchType.EAGER. This can be done:

 As a part of a JPL statement with FETCH JOIN,
SELECT DISTINCT a

FROM Author a JOIN FETCH a.books b

 Via annotations with @NamedEntityGraph,
@NamedEntityGraph(

 name = "graph.AuthorBooksReviews",

 attributeNodes = @NamedAttributeNode(

value = "books")

)

Read more: http://bit.ly/1GWjxEP

 Based on a Java API with Entity Graph.
EntityGraph graph =

this.em.createEntityGraph(Author.class);

Subgraph<Book> bookSubGraph =

graph.addSubgraph(Author_.books);

bookSubGraph.addSubgraph(Book_.reviews);

Read more: http://bit.ly/1MUMRSp

http://www.thoughts-on-java.org/
http://bit.ly/1GWjxEP
http://bit.ly/1MUMRSp

Hibernate Performance Tuning

www.thoughts-on-java.org

Let the database handle data heavy operations
The database can handle huge datasets very efficiently and it can be more
efficient to perform some operations within the database instead of the Java
application.

Simple operations can be performed within a JPQL or native SQL query.
If you need more complex operations, you can call stored procedures. These
queries can be defined:

 Via annotations with @NamedStoredProcedureQuery,
@NamedStoredProcedureQuery(name = "getBooks",

 procedureName = "get_books",

 resultClasses = Book.class,

 parameters = {

@StoredProcedureParameter(mode =

ParameterMode.REF_CURSOR, type = void.class) })

Read more: http://bit.ly/1hWRIpn

 A Java API with StoredProcedureQuery
StoredProcedureQuery query =

this.em.createStoredProcedureQuery

("get_books", Book.class);

query.registerStoredProcedureParameter(1,

void.class, ParameterMode.REF_CURSOR);

query.execute();

Read more: http://bit.ly/1OKxwWn

http://www.thoughts-on-java.org/
http://bit.ly/1hWRIpn
http://bit.ly/1OKxwWn

Hibernate Performance Tuning

www.thoughts-on-java.org

Use caches to avoid repeatedly reading the same data
Modular applications and parallel user sessions often result in reading the
same data multiple times. This data can be efficiently cached, if it does not
change too often.

Hibernate offers 3 different kinds of caches:

 1st level cache
o This 1st level cache is activated by default and contains all entities

that were used within the session.

 2nd level cache
o The second level cache also stores entities and is session

independent.
o It needs to be activated via the shared-cache-mode

property in the persistence.xml
o The caching of specific entities can be activated by adding the

javax.persistence.Cacheable or the
org.hibernate.annotations.Cache annotation to the
entity.

 Query cache
o The query caches stores query results and is session independent.
o It does only store scalar values and entity references and should

always be used together with the 2nd level cache.
o It needs to be activated in the persistence.xml via the

hibernate.cache.use_query_cache property and the
cacheable property on the Query.

Perform updates and deletes in bulks
Updating and deleting entities one by one can be very inefficient. SQL supports
update and delete statements that affect multiple records at once.

CriteriaUpdate and CriteriaDelete can be used to update and
delete multiple records at once.

CriteriaUpdate<Order> update =

 cb.createCriteriaUpdate(Order.class);

CriteriaDelete<Order> delete =

 cb.createCriteriaDelete(Order.class);

Read more: http://bit.ly/1AwX55x

http://www.thoughts-on-java.org/
http://bit.ly/1AwX55x

